聯(lián)絡(luò)中心得益于豐富的歷史數(shù)據(jù),應(yīng)該能夠提供良好的預(yù)測。但實際情況往往大不相同。
本文介紹了生成聯(lián)絡(luò)中心預(yù)測的四種主要模型的最新想法:
- 三重指數(shù)平滑(或Holt Winters)
- ARIMA(自回歸綜合移動平均--Auto Regressive Integrated Moving Average)
- 神經(jīng)網(wǎng)絡(luò)
- 多時態(tài)聚合(Multiple Temporal Aggregation)
讓我們來看看預(yù)測在聯(lián)絡(luò)中心面臨的幾個挑戰(zhàn)。
當(dāng)前聯(lián)絡(luò)中心預(yù)測的三大挑戰(zhàn)
多季節(jié)性
聯(lián)絡(luò)中心有一個有趣的數(shù)據(jù)格式,因為他們有大量的數(shù)據(jù),遵循許多季節(jié)性的模式。
聯(lián)絡(luò)中心數(shù)據(jù)通常以不同的模式提供
- 間隔--通常每小時、半小時或15分鐘
- 每天
- 每周
- 每年
處理更高頻率(每小時和每天)的數(shù)據(jù)
聯(lián)絡(luò)中心數(shù)據(jù)的一個問題是,每小時的數(shù)據(jù)通常被平鋪成一個平均日數(shù)據(jù)。
考文垂大學(xué)(Coventry University)副教授(高級講師)德文·巴羅(Devon Barrow)說:“一般來說,我們在工業(yè)界發(fā)現(xiàn),標(biāo)準(zhǔn)方法是使用某種指數(shù)平滑法,很可能是霍爾特o溫特斯(Holt Winters)法。”
“通常是在每周的資源配置和總產(chǎn)能水平上,然后進(jìn)行分類。將每日或半小時的數(shù)據(jù)平均應(yīng)用于每周的預(yù)測量,以用于調(diào)度。”
“標(biāo)準(zhǔn)方法似乎是基于非常高水平的預(yù)測。”
將特殊情況剝離
聯(lián)絡(luò)中心的數(shù)據(jù)往往很難預(yù)測,因為它包含一系列需要剝離的聯(lián)絡(luò)峰谷。
這些峰谷可以從一系列特殊因素中得出,包括
- 人脈激增--這通常是營銷推廣的結(jié)果。
- 需求的逐步變化--例如收購新公司或引進(jìn)新產(chǎn)品。
- 天氣因素--降雪、洪水和酷熱天氣會對聯(lián)絡(luò)中心的呼叫數(shù)量產(chǎn)生重大影響。
- 特別活動--如世界杯這樣的活動可能會導(dǎo)致通話量大幅下降,但并非每年都會發(fā)生。
- 設(shè)備故障--斷電、電話線被切斷或設(shè)備故障無法記錄呼入聯(lián)系人的數(shù)量。
來自The Forum(以前稱為專業(yè)規(guī)劃論壇--the Professional Planning Forum)的約翰·凱西(John Casey)說:“在你使用預(yù)測方法之前,你需要能夠從你的聯(lián)絡(luò)中心預(yù)測中剝離出一些特殊的日子,否則你的假設(shè)是每年都會有一次世界杯。”
“本質(zhì)上,您需要去掉特殊日期,運行預(yù)測,然后將它們放回您的數(shù)據(jù)中以供報告之用。”
主要的四種聯(lián)絡(luò)中心預(yù)測模型
1、 平滑法
三重指數(shù)平滑(也稱為Holt-Winters技術(shù))是一種簡單的預(yù)測技術(shù),作為一種預(yù)測方法,它的穩(wěn)定性令人驚訝。自20世紀(jì)60年代開始使用,并廣泛應(yīng)用于聯(lián)絡(luò)中心預(yù)測,它構(gòu)成了大多數(shù)勞動力管理(WFM)預(yù)測系統(tǒng)的主干。
“三重”一詞意味著預(yù)測數(shù)據(jù)被分成3個預(yù)測組成部分--水平、趨勢和季節(jié)性--以相互“隔離”每個組成部分。
如果我們以月度預(yù)測為例,那么三個組成部分是
水平--上個月的預(yù)測
趨勢--與上個月相比,聯(lián)系人的預(yù)期增加或減少
季節(jié)性--季節(jié)對數(shù)據(jù)的影響(例如,3月份可能是一年中平均月份的120%,8月份可能是平均月份的85%--因為許多人在8月份休假,不太可能打電話給聯(lián)絡(luò)中心)。
指數(shù)平滑這一術(shù)語適用于從一個周期到下一個周期平滑(或平均)數(shù)據(jù)的方式。
使用三重指數(shù)平滑,水平、趨勢和季節(jié)性趨勢都是指數(shù)平滑的。艱難的工作來自于平滑系數(shù)的選擇--α(代表水平)、β(代表趨勢)和γ(代表季節(jié)性)。
這種方法的一個優(yōu)點是,一旦你熟悉了這個方法,就很容易對它進(jìn)行建模,甚至可以在Excel電子表格中進(jìn)行預(yù)測。
我們開發(fā)了一個聯(lián)絡(luò)中心預(yù)測工具,一個免費的每月電子表格模板,你可以使用。
最大的危險是很容易“過度擬合”數(shù)據(jù),因此,如果歷史交易量出現(xiàn)任何異常情況,例如停機(jī)或需求高峰,這些都可能導(dǎo)致非常奇怪的預(yù)測。
雖然三重指數(shù)預(yù)測可以被視為一種穩(wěn)健的“通用”預(yù)測模型,但它更適合于長期預(yù)測,而不是短期預(yù)測。
也可以使用雙重指數(shù)平滑和一系列其他變體。
2、 自回歸綜合移動平均
ARIMA(自回歸綜合移動平均--Auto Regressive Integrated Moving Average)
一種更先進(jìn)(更復(fù)雜)的預(yù)測方法是ARIMA,它在過去10年中越來越流行。
ARIMA是自回歸綜合移動平均數(shù)的縮寫。
在2007年國家統(tǒng)計局(Officef or National Statistics)將ARIMA作為首選算法之后,人們對ARIMA的興趣與日俱增。
ARIMA有三個主要組成部分:
自回歸--將數(shù)據(jù)與過去的模式進(jìn)行比較的能力(例如12個月或52周前的時間差)
綜合--比較或區(qū)別當(dāng)前觀察與先前觀察的能力
移動平均值--平滑過去一段時間內(nèi)的數(shù)據(jù)的能力。
人們常說三重指數(shù)平滑是ARIMA的一個特例。
ARIMA的一個特例看起來很有前途,是一種叫做雙季節(jié)ARIMA的特殊配方,由牛津大學(xué)的泰勒開發(fā)。
這允許您在數(shù)據(jù)中輸入多個季節(jié)性。因此,例如,您可以通過將季節(jié)性設(shè)置為48個時段(即24小時)和336個時段(48x7個時段或一周)來輸入每半小時數(shù)據(jù)。
三重指數(shù)平滑法和ARIMA法,哪個更適合于聯(lián)絡(luò)中心的預(yù)測?
從理論上講,ARIMA方法應(yīng)該能夠產(chǎn)生更好的結(jié)果。三重指數(shù)平滑只有三個參數(shù),所以它是一個相當(dāng)簡單的方法。ARIMA有更多的參數(shù),其中一些參數(shù)更直觀。問題在于復(fù)雜度可能會自行下降。
根據(jù)Brian O'Donnell在Stack Exchange上的帖子,“我見過有不同數(shù)據(jù)集的人比較兩種算法的結(jié)果,得到不同的結(jié)果。在某些情況下,Holt-Winters算法比ARIMA算法給出更好的結(jié)果,而在其他情況下則相反。我不認(rèn)為你會找到一個明確的答案,那就是什么時候該用一個來代替另一個。”
Lancaster University副教授(高級講師)Nikos Kourentzes說:“ARIMA和指數(shù)平滑的問題是,它們都無法獲得高頻數(shù)據(jù)的長期趨勢。”
3、 神經(jīng)網(wǎng)絡(luò)
最近,神經(jīng)網(wǎng)絡(luò)受到了廣泛的關(guān)注,特別是自從谷歌開始將其用于人工智能--語音識別和搜索算法之后。
神經(jīng)網(wǎng)絡(luò)也可以用于聯(lián)絡(luò)中心的預(yù)測。
Lancaster University副教授(高級講師)Nikos Kourentzes說:“神經(jīng)網(wǎng)絡(luò)用于預(yù)測已經(jīng)超過20年了,但最近我們看到計算能力的巨大增長,這使得它們更加實用。”
神經(jīng)網(wǎng)絡(luò)是一種試圖模擬人腦中神經(jīng)元或腦細(xì)胞的網(wǎng)絡(luò),它由許多試圖模擬人腦功能的“節(jié)點”組成。
這些網(wǎng)絡(luò)會查看一系列輸入,然后嘗試調(diào)整一個“隱藏”的網(wǎng)絡(luò),方法是改變一些權(quán)重,直到它們接近輸出匹配為止。例如,它們將掃描一系列的呼叫,并嘗試將下一項數(shù)據(jù)與預(yù)測相匹配。
看來神經(jīng)網(wǎng)絡(luò)在聯(lián)絡(luò)中心預(yù)測方面可能有很多潛在的優(yōu)勢
- 當(dāng)他們從所提供的數(shù)據(jù)中學(xué)習(xí)時,他們不需要編寫復(fù)雜的算法
- 他們可以接受外部輸入--如特殊日子、營銷活動、網(wǎng)站頁面瀏覽熱度,以模擬不同因素。
對于神經(jīng)網(wǎng)絡(luò)來說,一些最令人興奮的因素可能是自動從預(yù)測中剝離出特殊的日子。
但是神經(jīng)網(wǎng)絡(luò)也有很多缺點。
“神經(jīng)網(wǎng)絡(luò)得到的評價褒貶不一,部分原因是它們使用不當(dāng)。其理念是,如果我遇到預(yù)測問題,我就使用神經(jīng)網(wǎng)絡(luò),不管問題的具體挑戰(zhàn)是什么,它都將有助于解決問題,都將會越來越準(zhǔn)確。”考文垂大學(xué)(Coventry University)副教授(高級講師)德文·巴羅(Devon Barrow)說。
“神經(jīng)網(wǎng)絡(luò)受到抨擊是因為它們是所謂的黑匣子--你看不到里面發(fā)生了什么。”
神經(jīng)網(wǎng)絡(luò)是“非?粗剌斎”的,這意味著它們最適合處理高頻間隔(通常是半小時或四分之一小時)的數(shù)據(jù)。
生成神經(jīng)網(wǎng)絡(luò)的關(guān)鍵似乎在于網(wǎng)絡(luò)有多少節(jié)點(本質(zhì)上是多少內(nèi)存),理論上更多的節(jié)點應(yīng)該產(chǎn)生更好的結(jié)果,但性能要慢得多。
Nikos Kourentzes說:“如果問題是線性的,那么一個節(jié)點就足夠了,序列越復(fù)雜,需要的節(jié)點就越多。”。
“但復(fù)雜并不意味著人們所看到的復(fù)雜,在我看來,聯(lián)絡(luò)中心的時間序列看起來相當(dāng)復(fù)雜,但從數(shù)學(xué)角度來說卻不是。在大多數(shù)聯(lián)絡(luò)中心應(yīng)用中,少量的節(jié)點就足夠了。”
Nikos Kourentzes總結(jié)說:“神經(jīng)網(wǎng)絡(luò)也不太擅長做趨勢,但它們非常擅長處理季節(jié)性。”
4、 多時態(tài)聚合(MTA)
聯(lián)絡(luò)中心預(yù)測的最新思想是多時態(tài)聚合,這是一種兼顧高頻數(shù)據(jù)(每天每小時、每周)和長期趨勢的方法。
舉個例子,如果你把2016年的聯(lián)系人總數(shù)與2015年相比,你發(fā)現(xiàn)它增加了8%,那么這就是你的趨勢。你完全去掉了季節(jié)性因素。本質(zhì)上,這就是全年的聯(lián)系人和特殊事件的平均數(shù)。
Nikos Kourentzes說:“在年度數(shù)據(jù)中,你可以很容易地看到長期變化,但你看不到季節(jié)性、促銷或特殊活動。在高頻數(shù)據(jù)(每小時、每天)中,你看到的恰恰相反。”
通過聚合系列,您可以從不同的角度查看它。您永遠(yuǎn)無法從一個單一的視角提取所有內(nèi)容,但如果您從不同的聚合級別將所有聚合集合在一起,則您將擁有一個整體視圖。
多時態(tài)聚合的優(yōu)點是可以同時關(guān)注日內(nèi)數(shù)據(jù)和長期數(shù)據(jù)。
Nikos Kourentzes說:“假設(shè)我想預(yù)測一周前的情況。你所做的一開始聽起來有點奇怪,然后就有意義了。我需要預(yù)測未來一年的所有事情。”
“一年的小時數(shù),一年的天數(shù),一年的周數(shù),一年的季度數(shù),一整年的時間,所以一個是一個觀測值,另一個是8760個觀測值。”
“這樣做的好處是,現(xiàn)在你已經(jīng)創(chuàng)建了一個金字塔,在那里你可以協(xié)調(diào)價值觀,一切都能正確地相加。你可以將信息從頂層傳遞到底層,反之亦然。”
為了幫助理解多時態(tài)聚合是如何工作的,統(tǒng)計建模軟件包R中產(chǎn)生了一個軟件模型,稱為MAPA--多重聚合預(yù)測算法,它可以產(chǎn)生一些有希望的預(yù)測。還有一種叫小偷的MTA算法。
這種方法的結(jié)果看起來非常有趣。
從長遠(yuǎn)來看,哪種預(yù)測方法會占上風(fēng)?
對于一群花時間預(yù)測未來的人來說,哪種預(yù)測方法會占上風(fēng)的問題似乎有點像是在問“一根刺有多長”的問題。
當(dāng)然,神經(jīng)網(wǎng)絡(luò)和MTA看起來都能帶來有希望的結(jié)果。
但這可能不是“非此即彼”的情況。
神經(jīng)網(wǎng)絡(luò)和其他方法的結(jié)合是可能的,例如,我們可以看到一個神經(jīng)網(wǎng)絡(luò)過濾器在一個多時態(tài)聚合模型前面,或者我們也可以看到神經(jīng)網(wǎng)絡(luò)與指數(shù)平滑相結(jié)合。
德文·巴羅(Devon Barrow)說:“我認(rèn)為,在采用更復(fù)雜的預(yù)測方法方面,聯(lián)絡(luò)中心行業(yè)已經(jīng)落后了。”
“不過,我認(rèn)為問題不在于準(zhǔn)確性。如果你展望未來四五年,我認(rèn)為總體上會從預(yù)測準(zhǔn)確度轉(zhuǎn)向決策。”
“這一轉(zhuǎn)變將是將預(yù)測更好地融入決策過程,也就是說,不僅要根據(jù)準(zhǔn)確度來選擇預(yù)測,還要根據(jù)預(yù)測所支持的決策質(zhì)量,比如員工排班和新座席的培訓(xùn)。”
你在聯(lián)絡(luò)中心使用哪些預(yù)測方法?他們對你有多好?
聲明:版權(quán)所有 非合作媒體謝絕轉(zhuǎn)載
原文網(wǎng)址:
https://www.callcentrehelper.com/the-latest-techniques-for-call-centre-forecasting-117394.htm